
Adam McQuilkin - Meshtastic Network
Centralization Proposal

#meshtastic #dartmouth #cs

Summary
We are looking to introduce a new mesh packet that would allow for advanced network
analysis to be performed on Meshtastic networks. This packet would contain information
on the connection each node has to other nodes in the network. Some key takeaways:

1. This functionality would be disabled by default, and would require a user to manually
enable the transmission of this type of packet.

2. Assuming a constant network density , the payload size of such packets would
increase on the order of , not on the order of .

3. There is the potential for large routing improvements within networks if the routing
protocol utilizes this network state data.

This is a proposal, and as such all respectful feedback is welcome!

Introduction
My name is Adam McQuilkin[1] and I've been involved with Meshtastic for just under six
months. I'm on a student team designing and building a Meshtastic desktop client[2] with
the goal of allowing users to effectively administer large LoRa networks. We began the
project with the intended use case of emergency response in mind, hence the name, but
over time we've realized that our client has utility outside of purely the emergency
response space.

One of the core components of traditional network administration is being able to
accurately judge the vulnerability of a network to failure, either from direct attack or by
simple equipment failures. Within a mesh network, the problem space expands to include
other non-traditional issues, such as ensuring network coverage within a rapidly
changing network topology. While this changing topology is often an advantage of
Meshtastic networks, we are looking to give users of our client informed insight into
future network vulnerabilities[3]. We seek to do this through something akin to traditional
network analysis, in which we run network algorithms[4] on a graph built up over time
from incoming mesh packets.

d

O(dn) O(n2)

The major challenge we are encountering within this project is the decentralized nature of
a mesh network. By definition mesh networks are distributed, which leads to obvious
problems when we attempt to centralize network information within a single client. We
are able to determine which nodes are connected to the mesh network through standard
location metadata packets, but we are not able to determine the strength of the
connections between any two nodes in the network[5]. To collect this information, we
would need to know the strength of the connections from any given node in the
network to all of its neighbors, or at least its most recent neighbors.

Due to the distributed nature of the network and LoRa's low bandwidth, we have no
guarantee that we will have the most updated data on a given node's ability to connect to
any other given node in the network. As such, we are currently defining the "strength" of
the connection between a node and its neighbor as proportional to the quality[6] of
the most recent packet that has received from , and inversely proportional to the time

 since has last heard from . While it is possible that the nodes and will still
be able to transmit at high reliability a long time after , the likelihood that the edge

 has been severed increases logistically with .

Network Analysis and Meshtastic
The core issue within the Meshtastic ecosystem is that, to the best of our knowledge,
there is no way to collect this type of information on network topology other than being
directly connected to each node. A method for solving this would be to create a new
protobuf packet that would collect data from each node on the last time a message
was received from any other node in the network, as well as the SNR of and the time

 was received. This information could then be periodically transmitted into the network.

The primary issue we're considering with a potential "network state" packet would be the
risk of potential growth of the amount of data on the network. Assuming a network
were to be strongly connected, every node would have connections to other nodes
in the network, and each of these nodes would then place this information onto the
network. This would give us a payload data size complexity of . The
notable assumption here is that each node in the network is within range of all
nodes in the network. This may be the case in smaller networks, but I would argue this
will not be the case on larger networks.

Let's start with a theoretical smaller network (). Let's say that in this network, each
node is connected to other nodes, where and is close to . In this case,
let's assume each node will transmit this proposed "network state" packet once every 15
minutes. Even if , we will get 25 new packets every 15 minutes, each containing
information on 24 other nodes. Let's assume a connection between nodes takes up 12

a

x

a b Q

a b

tcurr − trecv a b a b

trecv

(a, b) tcurr − trecv

a M

b M

M

O(n2)

n − 1

n

O(n ⋅ (n − 1)) ≡ O(n2)

n − 1

n ≤ 25

m 0 ≤ m ≤ n m
n 1

m = n

bytes of payload (4-byte id of the connected node, 4-byte time last packet received, 4-
byte last packet received snr). From this, we get the following:

This means, in the worst case of a smaller network, that getting this information on the
network would add an additional 7200 bytes per 15 minute period to the network. Note
that this excludes metadata contained within mesh packets for simplicity. This would
certainly be a bandwidth investment for the network, and as such this functionality would
need to be completely opt-in (see Network Status Packet Transmission without User
Knowledge).

In a larger network, we can make the assumption that each node would not have
connections, and would instead have connections as . Let's assume that,
across the entire network, that the ratio of nodes on the network to the number of
connections per node is approximately constant. Let's call this ratio , where . If
we assume that is constant, this means that the amount of data on the network
becomes . Excitingly, is asymptotically equivalent to since is a scalar
multiple that is independent of network size . This means, as the size of a network
grows, the relative overhead of this proposed packet would be proportional to the
number of nodes on the network, not proportional to .

Note that could be artificially limited based on the memory availability on each node,
meaning that could also be kept artificially low. An example of this could be a queue of
fixed size that evicts information on the oldest connection to a given node when a new
connection is received. This would also serve to limit the packet overhead on the
network, say to 10 connections per node. This max number of saved connections could
be defined as a protobuf constant, meaning it would be standardized across all nodes in
the network.

Proposed Form of Packet
To run network analysis on Meshtastic networks using this proposed network status
packet, we are looking for the following data on each node connection :

SNR: The signal to noise ratio of the last packet that node has heard from node .
RX Time: The time that node received a packet from node . This would be in the
form of seconds since unix epoch, which is standard across Meshtastic.
Node ID: The unique network ID of node . This will be matched to other packets sent
over the network, such as Position packets.

An example of the form of this structure is shown below, given in Rust. This code could
be automatically generated from the updated protobuf definitions.

25 packets ⋅ 24 connections per packet ⋅ 12 bytes per connection = 7200 bytes of payload

m → n

m << n n → ∞

n

m d d := m
n

d

O(dn) O(dn) O(n) d

n

n n2

m

d

(a, b)

a b

a b

b

Network Security
One concern with any new packet that has the possibility of reduced network security.
This is something that we've tried to be very conscious of, especially for users of
Meshtastic who require heightened network security for their use cases.

Unauthorized Access of User Location Data

When working with user location data, it is very important to ensure that the data is only
able to be accessed by the intended recipient of the data. In this case, the intended
recipients would be individuals in the same group as the node transmitting the packet.
What defines that group is up to the user, meaning key-sharing similar to channels would
be necessary to make this packet useful.

This encryption could be simplified through implementing this packet as a new Data
variant within the MeshPacket message, meaning that the encryption flow would not have
to be recreated from scratch, and these messages could be encrypted as with any other
MeshPacket payload.

Network Status Packet Transmission without User Knowledge

Another concern that would need to be addressed would be packets being sent without
the knowledge of a given user. This would give a trivial way to track specific nodes on the
network, with no way for the node's user to know. To address this, this proposed packet
would need to be controlled with a config field that would default to disabled . This
would mean that each node would need to manually enable the transmission of this
information.

Future Expansion
Assuming this proposal is acted upon, there is an interesting potential avenue for
significant routing improvements. Our understanding of the current routing protocol[7] is
that it is a naive flooding algorithm in which every packet will be sent to every node in a

pub struct NetworkStatusPacket {

	 pub connections: Vec<NetworkConnection>,

}

pub struct NetworkConnection {

	 pub remote_node_id: u32,

	 pub last_packet_snr: u32,

	 pub last_packet_rx_time: u32,

}

given network, assuming a path to such a node exists. With additional network topology
information available on the network, it is possible that large routing performance
improvements could be made on networks that enable such functionality. For example,
being able to determine which direction a given node is from a given other node would be
valuable information for reducing redundant network traffic.

This routing capability could be improved via an additional configuration field, in which
nodes could specify how often they will send out such network status packets. If a group
is willing to use more network bandwidth for routing packets, they would be able to
improve the quality of their routing protocol. Theoretically, there is some retransmission
interval that would lead to a net routing performance improvement, where the increased
number of packets on the network would be outweighed by the routing improvements
they enable.[8]

1. https://www.adammcquilkin.com/
↩︎
2. Built in Rust and TypeScript, https://github.com/ajmcquilkin/Meshtastic-emergency-response-

client
↩︎
3. Mid-network disconnection, disconnection of a single operator, bandwidth-limiting edges, etc...

↩︎
4. Examples of algorithms include SCC detection, Global Minimum Cut detection
↩︎
5. This is excluding any nodes that the radios connected to our client can directly communicate with,

since our client can reliably gain information on the state of such connections.
↩︎
6. Signal quality in this case refers to the SNR of the last packet node
has received from node
.

↩︎
7. This document was first drafted in January 2023.
↩︎
8. This interval would be highly dependent on how dense the network was, as well as how much of a

performance improvement a theoretical new routing algorithm could be.
↩︎

a b

https://www.adammcquilkin.com/
https://github.com/ajmcquilkin/Meshtastic-emergency-response-client

